• Photo by Nicolas J Leclercq on Unsplash
  • Photo by Nicolas Tissot on Unsplash
  • Photo by NASA on Unsplash
  • Photo by USGS on Unsplash

Summer School Lectures

IAGA organises a summer school every alternate year along with the conference. The IAGA summer school 2021 was conducted online one week before the IAGA General Assembly 2021 in August. The students got hands-on experience, albeit virtually, as well as theoretical lectures, on various topics pertaining to earth and space magnetism.

Most of these lectures are now available online with DOIs! Anyone interested to learn more about magnetism is welcome to have a look. Early career scientists as well as magnetism students can gain a lot of information from these lectures by renowned scientists in the field. These videos are also available for download on the ERDA (Earth Reference Data and Models) platform.

The videos/presentations that are available now are-

Observational Geomagnetism by David Kerridge

Geomagnetic Modelling by David Kerridge

Magnetospheric Physics by Yoshizumi Miyoshi

Paleomagnetism by Julie Carlut

Data Assimilation by Alexandre Fournier

Discovering the Magnetosphere and Ionosphere by Eliah Sao Sabbas

FAIRIES by Eliah Sao Sabbas

Electromagnetism by Stephan Thiel

Hopefully, these videos will give an idea about the summer schools and more and more students will get interested in pursuing this field. 

On the connection between Martian global dust storms, waves, and water escape

Mars is the second most studied planet in the universe. Owing to great progress in observational and modeling techniques, fundamental atmospheric processes can be studied in great detail on Earth, which helps us study similar physical processes in other planetary atmospheres. On Earth, we take it for granted that there is plenty of water on the surface and atmosphere. On Mars, the question of what happened to (liquid) water is an exciting aspect of Martian climate science. It is thought that the early Mars used to have more habitable conditions with plenty of water on its surface and in its atmosphere. Studying habitability of a planet is to a large extent related to characterizing its atmospheric circulation patterns (winds) and thermal structure (temperature), which are important factors that control the presence and distribution of water. Probably one of the first things researchers seek to find on other planets in the Solar System and beyond is others forms of life. The common sense suggests that where there is a sufficient amount of liquid water, there could also be life. Why we look for life in the universe is, I guess, a philosophical question. 

On Mars, global dust storms are reoccurring phenomena and atmospheric gravity waves, generated by a variety of meteorological phenomena in the lower atmosphere, continuously populate the whole atmosphere system. Gravity (or buoyancy) waves are essentially small-scale short-period variations in atmospheric parameters such as winds, temperature, density, and pressure. A recent study based on (MAVEN) Mars Atmosphere Volatile Evolution Mission observation showed that during global dust storms, thermospheric gravity wave activity nearly doubles. It is quiet fascinating that processes taking place on the surface of a planet can influence upper layers of the atmosphere 200 km above the surface. This vertical coupling is meanwhile a major field of research in atmospheric sciences. This research finding immediately raises the question of how the processes of dust storms, gravity waves and Martian atmospheric escape are interrelated. 

This brings me to my main motivation to write this contribution in a recent science perspective article, in which I proposed that lower atmospheric gravity waves are a key player in shaping Martian water escape especially during global dust storms. Gravity waves are probably the missing puzzle piece in the context of Martian water cycle. Gravity waves shape the circulation and thermal structure of the Martian middle and upper atmosphere during all seasons. By influencing the mean meridional circulation (north-south winds) and upward winds on Mars, they can control the degree of water vapor transport from the mesosphere to the thermosphere, where water can be dissociated to hydrogen and oxygen. Hydrogen, the lighter species of the both, can easily escape to space. During global dust storms an increased amount of thermospheric gravity wave activity in form of increased temperature perturbations implies enhanced Jeans escape, since it is related to temperature variations. This can lead to an irreversible loss of hydrogen into space, depleting the atmosphere of water constituents. Over the course of many million years, global dust storms together with enhanced atmospheric wave activity could have diminished Martian atmospheric water reservoirs. Coordinated observational and modeling studies are needed to provide further insight into the complexity of water transport and loss on Mars.

After receiving his Ph.D. in physics from the University College London, UK, in 2009 in physics, Erdal Yiğit worked as a researcher at the University of Michigan (2009-2012) and UC Berkeley (2012-2013). He joined George Mason University as a faculty member in 2013; was granted tenure in 2018, and is currently working as an Associate Professor of Physics. He is the recipient of the 2016 Zeldovich Medal jointly presented by COSPAR and the Russian Academy of Sciences for his significant contributions to the study of coupling between the lower and upper atmospheres on Earth and Mars by gravity waves.


PhD in IAGA #1

IAGA has a lot of different scientists working on various topics. In this series of blogs, we will introduce some topics that are being worked on by PhD students. Hopefully this will give a better picture of the work being done in the field and encourage more early career researchers.

Paweł Jujeczko is a PhD candidate working in the Space Research Centre at the Polish Academy of Sciences. He says:

My research topic concerns the physics of Transient Luminous Events (TLEs). For those not familiar with that abbreviation, TLEs are some various phenomena that occur over very powerful thunderclouds (~10 to 100 km above the ground). In my research I model the behaviour of a TLE called "sprite" with a multi-processor code which works within the kinetic plasma theory. I try to model an instability that is possibly present in a plasma of TLE conditions or in simpler words, I try to tell why sprites look like these on the picture here.

Credit : https://apod.nasa.gov/apod/ap191008.html